142 research outputs found

    A Factored Relevance Model for Contextual Point-of-Interest Recommendation

    Get PDF
    The challenge of providing personalized and contextually appropriate recommendations to a user is faced in a range of use-cases, e.g., recommendations for movies, places to visit, articles to read etc. In this paper, we focus on one such application, namely that of suggesting 'points of interest' (POIs) to a user given her current location, by leveraging relevant information from her past preferences. An automated contextual recommendation algorithm is likely to work well if it can extract information from the preference history of a user (exploitation) and effectively combine it with information from the user's current context (exploration) to predict an item's 'usefulness' in the new context. To balance this trade-off between exploration and exploitation, we propose a generic unsupervised framework involving a factored relevance model (FRLM), comprising two distinct components, one corresponding to the historical information from past contexts, and the other pertaining to the information from the local context. Our experiments are conducted on the TREC contextual suggestion (TREC-CS) 2016 dataset. The results of our experiments demonstrate the effectiveness of our proposed approach in comparison to a number of standard IR and recommender-based baselines

    Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer

    Get PDF
    Everolimus, an inhibitor of the mammalian target of rapamycin (mTOR), is effective in treating tumors harboring alterations in the mTOR pathway. Mechanisms of resistance to everolimus remain undefined. Resistance developed in a patient with metastatic anaplastic thyroid carcinoma after an extraordinary 18-month response. Whole-exome sequencing of pretreatment and drug-resistant tumors revealed a nonsense mutation in TSC2, a negative regulator of mTOR, suggesting a mechanism for exquisite sensitivity to everolimus. The resistant tumor also harbored a mutation in MTOR that confers resistance to allosteric mTOR inhibition. The mutation remains sensitive to mTOR kinase inhibitors

    Circadian Rhythms in Urinary Functions: Possible Roles of Circadian Clocks?

    Get PDF
    Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mechanisms of these variations are as yet unclear. In this review, we briefly introduce circadian clocks and their organization in mammals. We then summarize known daily or circadian variations in urinary function. Importantly, recent findings by others as well as results obtained by us suggest an active role of circadian clock genes in various urinary functions. Finally, we discuss possible research avenues for the circadian control of urinary function

    Tuning the Mammalian Circadian Clock: Robust Synergy of Two Loops

    Get PDF
    The circadian clock is accountable for the regulation of internal rhythms in most living organisms. It allows the anticipation of environmental changes during the day and a better adaptation of physiological processes. In mammals the main clock is located in the suprachiasmatic nucleus (SCN) and synchronizes secondary clocks throughout the body. Its molecular constituents form an intracellular network which dictates circadian time and regulates clock-controlled genes. These clock-controlled genes are involved in crucial biological processes including metabolism and cell cycle regulation. Its malfunction can lead to disruption of biological rhythms and cause severe damage to the organism. The detailed mechanisms that govern the circadian system are not yet completely understood. Mathematical models can be of great help to exploit the mechanism of the circadian circuitry. We built a mathematical model for the core clock system using available data on phases and amplitudes of clock components obtained from an extensive literature search. This model was used to answer complex questions for example: how does the degradation rate of Per affect the period of the system and what is the role of the ROR/Bmal/REV-ERB (RBR) loop? Our findings indicate that an increase in the RNA degradation rate of the clock gene Period (Per) can contribute to increase or decrease of the period - a consequence of a non-monotonic effect of Per transcript stability on the circadian period identified by our model. Furthermore, we provide theoretical evidence for a potential role of the RBR loop as an independent oscillator. We carried out overexpression experiments on members of the RBR loop which lead to loss of oscillations consistent with our predictions. These findings challenge the role of the RBR loop as a merely auxiliary loop and might change our view of the clock molecular circuitry and of the function of the nuclear receptors (REV-ERB and ROR) as a putative driving force of molecular oscillations

    Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics

    Get PDF
    AbstractThe circadian timing system plays a key role in orchestrating lipid metabolism. In concert with the solar cycle, the circadian system ensures that daily rhythms in lipid absorption, storage, and transport are temporally coordinated with rest-activity and feeding cycles. At the cellular level, genes involved in lipid synthesis and fatty acid oxidation are rhythmically activated and repressed by core clock proteins in a tissue-specific manner. Consequently, loss of clock gene function or misalignment of circadian rhythms with feeding cycles (e.g., in shift work) results in impaired lipid homeostasis. Herein, we review recent progress in circadian rhythms research using lipidomics, i.e., large-scale profiling of lipid metabolites, to characterize circadian-regulated lipid pathways in mammals. In mice, novel regulatory circuits involved in fatty acid metabolism have been identified in adipose tissue, liver, and muscle. Extensive diversity in circadian regulation of plasma lipids has also been revealed in humans using lipidomics and other metabolomics approaches. In future studies, lipidomics platforms will be increasingly used to better understand the effects of genetic variation, shift work, food intake, and drugs on circadian-regulated lipid pathways and metabolic health

    No effect of feedback, level of processing or stimulus presentation protocol on perceptual learning when easy and difficult trials are interleaved

    Get PDF
    The role of feedback during training is a topic of great theoretical importance in perceptual learning. Feedback can be provided externally by the environment or internally by the observer. In order to evaluate the effectiveness of learning with internal versus external feedback, we performed a large multi-level experiment, varying the type of training task (Motion or Form), the level of processing (Local or Global), the presence of feedback (With or Without) and finally the method of stimulus presentation (Adaptive staircase or Method of constant stimuli). 140 participants were randomly assigned to one of ten groups and undertook 3 days of training in one condition only. Detection thresholds were measured daily before and after training with a pre- and post-assessment. A 75% detection threshold was calculated and used to estimate that day’s training levels (65% and 85% accuracy for difficult and easy trials respectively). The group trained with MOCS were presented with predefined randomly interleaved easy and difficult trials ranging from 50% to 95% stimulus intensity. Our findings indicate that improvement was generally robust across training-tasks, processing levels and feedback conditions. This suggests that internal reinforcement is as effective as external feedback in a discrete-noise-paradigm for local and global tasks when easy and difficult trials are interleaved

    Invasive Prenatal Diagnostic Testing Recommendations are Influenced by Maternal Age, Statistical Misconception and Perceived Liability

    Get PDF
    Funding policy and medico-legal climate are part of physicians’ reality and might permeate clinical decisions. This study evaluates the influence of maternal age and government funding on obstetrician/gynecologist recommendation for invasive prenatal testing (i.e. amniocentesis) for Down syndrome (DS), and its association with the physician’s assessment of the risk of liability for medical malpractice unless they recommend amniocentesis. Israeli physicians (N = 171) completed a questionnaire and provided amniocentesis recommendations for women at 18 weeks gestation with normal preliminary screening results, identical except aged 28 and 37. Amniocentesis recommendations were reversed for the younger (‘yes’ regardless of testing results: 6.4%; ‘no’ regardless of testing results: 31.6%) versus older woman (‘yes’ regardless of testing results: 40.9%; ‘no’ regardless of testing results: 7.0%; χ2 = 71.55, p < .01). About half of the physicians endorsed different recommendations per scenario; of these, 65.6% recommended amniocentesis regardless of testing results for the 37-year-old woman. Physicians routinely performing amniocentesis and those advocating for amniocentesis for all women ≥ age 35 were approximately twice as likely to vary their recommendations per scenario. Physicians who perceived risk of liability for malpractice as large were nearly one-and-a-half times more likely to vary recommendations. The results indicate physicians’ recommendations are influenced by maternal age, though age is already incorporated in prenatal DS risk evaluations. The physician’s assessment of the risk that they will be sued unless they recommend amniocentesis may contribute to this spurious influence
    corecore